[image: image1.jpg][image: image2.jpg][image: image3.jpg][image: image4.jpg][image: image5.jpg][image: image6.jpg][image: image7.jpg][image: image8.jpg]
Computer Networks 46 (2004) 273–293

www.elsevier.com/locate/comnet

OSPF-based hybrid approach for scalable dissemination

of QoS parametersq
Turgay Korkmaza,*, Marwan Krunzb, Jyothi Guntakaa
a
Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA

b
Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721, USA

Received 23 June 2003; received in revised form 29 February 2004; accepted 3 March 2004

Available online 26 May 2004

Responsible Editor: S. Fdida

Abstract

Current link-state routing protocols (e.g., OSPF) use ﬂooding to disseminate link-state information throughout the

network. Despite its simplicity and reliability, ﬂooding incurs unnecessary communication and processing overheads in

control plane since nodes may receive multiple copies of the same advertisement. These overheads become signiﬁcant in

protocols that support quality-of-service (QoS) routing, where links are associated with dynamic metrics (e.g., available

bandwidth) that need to be advertised frequently. The overheads can be signiﬁcantly reduced using tree-based

broadcasting approaches. Although a number of such approaches have been proposed in the literature, they have not

been used in real networks because of their complexity and/or unreliability. In this paper, we propose a hybrid link-state

dissemination approach that combines the best features of ﬂooding and tree-based broadcasting. Our approach is

particularly suited for the dissemination of ‘‘dynamic’’ link metrics (e.g., available bandwidth), which are often used in

QoS-based path selection and traﬃc engineering. In our approach, topological changes and ﬁrst-time LSAs (link-state

advertisements) are ﬂooded, whereas refresh LSAs (the ones that provide updated information on the dynamic metrics)

are sent using tree-based broadcasting. The broadcast trees in our approach are constructed dynamically during the

ﬂooding of the ﬁrst-time LSA, without the need for the complex algorithms of previously proposed tree-based ap-

proaches. Two versions of the proposed scheme are provided; one being more suitable for quasi-static topologies (i.e.,

link failure rate is low) while the other is aimed at highly dynamic networks. We show how both versions can be

integrated into the OSPF protocol. We further provide a working implementation of both versions, obtained after

modifying Moy’s OSPF source code [OSPF: Complete Implementation (with CD-ROM), Addison Wesley, Reading,

MA, 2000]. We contrast the communications and processing overheads of our scheme with those of ﬂooding and pure

tree-based broadcasting, using both analysis and simulations. Our results indicate that the hybrid approach has a

signiﬁcantly lower overhead than ﬂooding; yet it enjoys the simplicity, reliability, and fast convergence of ﬂooding.

У
2004 Elsevier B.V. All rights reserved.

q The work of M. Krunz was supported in part by the National Science Foundation through grants ANI-0095626, ANI-0313234,

and ANI-0325979; and in part by the Center for Low Power Electronics (CLPE) at the University of Arizona. CLPE is supported by

NSF (grant # EEC-9523338), the State of Arizona, and a consortium of industrial partners. An abridged version of this paper was

presented at the IEEE GLOBECOM 2002––High Speed Networks Symposium, Taipei, Taiwan, November 17–21, 2002.

* Corresponding author. Tel.: +1-210-458-7346.

E-mailaddresses: korkmaz@cs.utsa.edu (T. Korkmaz), krunz@ece.arizona.edu (M. Krunz), jguntaka@cs.utsa.edu (J. Guntaka).

1389-1286/$ - see front matter
У
2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2004.03.034

274

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

Keywords: Flooding; Tree-based broadcasting; OSPF; Link-state routing; Scalable QoS routing

1. Introduction

In link-state routing, nodes in a routing domain

try to maintain an accurate ‘‘map’’ of the under-

lying network. To achieve this goal, each node

encodes the state information related to its out-

going links into a link-state advertisement (LSA)

packet and disseminates this LSA throughout the

network. To disseminate LSAs in a simple and

reliable manner, existing link-state routing proto-

cols (e.g., OSPF [18,19]) use ﬂooding, in which an

incoming LSA is forwarded to all neighbors except

the one from which the LSA was received. As a

result, a given node may receive the same LSA

several times, causing unnecessary communica-

tions and processing overhead.

One can argue that the overhead of ﬂooding

which is in control plane is small when compared

to data traﬃc. However, this is primarily the case

for static link metrics that are advertised rather

infrequently. Even in that case, routing protocols

(e.g., OSPF) try to minimize the overhead of

ﬂooding by advertising small-size LSAs every 30

min. This infrequent dissemination is suﬃcient for

a best-eﬀort service, but not for QoS-oriented

network services, in which multiple link metrics

(e.g., available bandwidth, link delay, jitter, etc.)

need to be disseminated. With more parameters

being advertised, the size of the LSA inevitably

gets larger. Moreover, some of these parameters

(e.g., available bandwidth) are quite dynamic, and

thus must be frequently disseminated (e.g., using

triggered updates [1]) to provide an accurate rep-

resentation of the underlying network. As we start

to incorporate dynamic metrics (such as the

available link bandwidth) into the routing archi-

tecture, the amount of control overhead will in-

crease by orders of magnitude, depending on the

dynamic nature of the link-state parameters. For

example an egress link that carries few connec-

tions, a change in the bandwidth of any of these

connections (including the case of connection ter-

mination) can, in principle, trigger a new band-

width advertisement. These changes can occur at

the time scale of seconds, not minutes, creating a

large number of update messages per time unit.

While QoS routing architectures are yet to be de-

ployed and more insight into and understanding of

their impact on the operation of the network are

still needed, it is our belief that such architectures

will generate large control-traﬃc volume. Note

that the large volume of control traﬃc not only

impacts the bandwidth usage, but also the eﬃ-

ciency of packet switching at the router and delay

variation for data packets. Because the router

gives higher switching priority to control packets,

the arrival of a new control packet triggers an

interrupt and forces the processor at the router to

switch from one task to another, which degrades

the performance of the router and increase the

delay for data packets. Therefore, schemes that

reduce the anticipated control-traﬃc volume will

have a great impact on the success of link-state

routing protocols.

To reduce the overhead of ﬂooding in link-state

protocols, researchers have investigated tree-based

broadcasting approaches [4,14], in which LSAs are

forwarded over broadcast trees such that every

node receives exactly one copy of each LSA. While

tree-based broadcasting reduces the overhead, it

introduces a challenging problem, namely how to

determine and maintain consistent broadcast trees

throughout the network. Previously proposed

solutions for this problem rely on complex algo-

rithms and protocols (see Section 2 for details),

making them impractical to deploy in real net-

works.

In this paper, we propose a hybrid mechanism

that combines the best features of ﬂooding and

tree-based broadcasting. The proposed mechanism

alternates
between
ﬂooding
and
tree-based

broadcasting modes. In the ﬂooding mode, ‘‘ﬁrst-

time’’ LSAs are ﬂooded to establish the broadcast

trees, over which subsequent (refresh) LSAs are

advertised in the tree-based broadcasting mode.

The proposed hybrid mechanism can, in principle,

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

275

be used with any link-state routing protocol. For

concreteness, we focus on the current OSPF pro-

tocol and its QoS extensions as described in [2].1
In general, the proposed approach requires three

modiﬁcations to OSPF: (1) redeﬁning some of the

currently unused bits in the LSA header, (2) add-

ing a table in each router for maintaining infor-

mation relevant to the broadcast trees, and (3)

adding and/or modifying some of the steps in the

‘‘ﬂooding procedure’’ of OSPF. We implemented

and tested these modiﬁcations using the source

code and simulation environment provided by

Moy [20]. The hybrid mechanism is shown to

achieve a signiﬁcant reduction in the communica-

tions overhead compared to ﬂooding; yet, it

maintains the simplicity and reliability of ﬂooding.

Compared to pure tree-based broadcasting, the

proposed mechanism incurs a slight extra over-

head, but this overhead is overshadowed by the

simplicity of this mechanism and its amenability to

practical application in real networks. Further-

more, in contrast to previous tree-based broad-

casting mechanisms, in which the broadcast trees

are determined based on the hop count, ours uses

the minimum delay experienced during the ﬂood-

ing of a ﬁrst-time LSA to compute the broadcast

our
software
implementation
of
the
hybrid

scheme, performed by modifying Moy’s OSPF

source code. A complete description of this

implementation is available online at www.cs.utsa.
edu/~korkmaz/research/hftb.
2. Background and related work

2.1. Flooding

Flooding is used in OSPF to disseminate the

link-state information to all routers in the same

domain. Each router periodically generates LSAs

representing the parameters of its outgoing links

and sends these LSAs to all of its neighbors.

Routers forward received LSAs to their neighbors

except the ones that sent the LSAs. Typically,

received LSAs are explicitly acknowledged, al-

though in some cases the acknowledgement

(ACK) is implicit (for example, if two neighbors

send the same LSA to each other at around the

32 bits

trees. As a result, it enjoys the same fast conver-

gence of ﬂooding.

The rest of this paper is organized as follows. In

Section 2, we give background information on

LS Age

Options

Link State ID

Advertising Router

LS sequence number

1

ﬂooding in OSPF and review the literature on tree-

LS checksum

length

based broadcasting. In Section 3 we present the

basic version of the proposed hybrid mechanism,

describe how to integrate it into the OSPF proto-

Router Type

0

 number of advertised links
l=2
 Link ID

 Link Data

col, analyze its overhead, and contrast this over-

	
 Link Type
	# TOS = q

number of QoS parameters

cost metric

head with those of ﬂooding and pure tree-based

broadcasting using both analysis and simulations.

In Section 4 we present a variant of the hybrid

mechanism that is suited for dynamic topologies

with a high rate of link failures. Extending the

hybrid mechanism to hierarchical OSPF networks

 TOS (QoS 1)

 TOS (QoS 2)

 TOS (QoS q)

0

0

0

 TOS metric (QoS value)

 TOS metric (QoS value)

 TOS metric (QoS value)

 Link ID

 Link Data

is described in Section 5. The paper is concluded in

Section 6. In the Appendix A, we give highlights of

1
The Opaque LSA Option [8] is another proposal to provide

	
 Link Type
	# TOS = q

number of QoS parameters

 TOS (QoS 1)
0

 TOS (QoS 2)
0

 TOS (QoS q)
0

cost metric

 TOS metric (QoS value)

 TOS metric (QoS value)

 TOS metric (QoS value)

QoS extensions in OSPF. Since it also relies on ﬂooding, it can

be easily integrated into our hybrid approach.

Fig. 1. Structure of an OSPF router-LSA with two advertised

links.

276

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

same time, then each of them can be sure that the

other has the LSA, so there is no need to gen-

erate explicit ACKs). This ﬂooding process allows

every node to acquire the same map of the net-

work.

OSPF uses ﬁve types of LSAs. For a network

with point-to-point links, only one of these types,

known as router-LSA, is used. The basic structure

of a router-LSA is shown in Fig. 1. Every router-

LSA starts with a 20-byte header that contains

information that uniquely identiﬁes the LSA. The

rest of the LSA contains the values of the ‘‘cost’’
metric and any additional QoS parameters that are

associated with the outgoing links of the LSA’s

originator. Note that OSPF currently uses a single

metric, but the type-of-service (TOS) ﬁeld in

OSPF, which has not been much used in the past,

can be redeﬁned to advertise multiple link

parameters (see [2] for details). Consider the sha-

ded ﬁelds in Fig. 1. In this example, the number of

advertised links is indicated by
l. The link-state

information is then repeated l times with diﬀerent

values. Each link has some identiﬁcation infor-

mation followed by the link parameters. The

number of link parameters is indicated by q. Each

parameter is encoded using a four-byte ﬁeld that

includes the parameter name and its value. Hence,

the size (in bytes) of a router-LSA originating from

node
u
is given by
SрuЮјdef20 ю 4 ю lрuЮр12 ю 4qЮ,

where
lрuЮ
is the number of advertised outgoing

links from node
u
(i.e., lрuЮ ј degрuЮ). Note that

an LSA ACK packet consists of only a 20-byte

header.

Flooding has also been used for path determi-

nation in mobile ad hoc networks (MANETs), and

reducing its overhead has been the focus of much

research. In MANETs, the routing protocol

may be
proactive
(table driven) or
reactive
(on-

demand).2Examples of proactive protocols are

DSDV [25], WRP [21], and CGSR [7]. In proactive

protocols, nodes periodically broadcast their link

(or path) costs and use Dijkstra (or Bellman–Ford)

like algorithms to compute the ‘‘shortest’’ paths to

various destinations. These protocols are some-

2
A combination of reactive and proactive approaches can

also be used, as in the zone routing protocol (ZRP) [13].

what similar to link-state and distance-vector

protocols used over the wired Internet (e.g., OSPF

and BGP). Reactive protocols, on the other hand,

operate on demand; when the source node does not

have in its cache a path to a given destination, it

broadcasts a route request (RREQ) packet, que-

rying its neighbors about the availability of such a

path. Dynamic source routing (DSR) [15], ad-hoc

on-demand distance vector (AODV) [24], and the

temporally ordered routing algorithm (TORA)

[23] are all examples of reactive routing protocols.

In their basic forms, reactive protocols rely on

ﬂooding for path discovery, whereby the source

node ﬂoods the network with its RREQ packet.

When an intermediate node receives the RREQ

packet, it responds back with a route reply

(RREP) if it has a path to the destination.

Otherwise, the intermediate node continues to

ﬂood the packet. Eventually, at least one node

(possibly the destination itself) will respond aﬃr-

matively with a RREP. The overhead of ﬂooding

via wireless broadcast is even more signiﬁcant than

ﬂooding over point-to-point links, and it can lead

to a ‘‘broadcast storm problem’’ [22] (neighboring

nodes that receive an RREQ packet rebroadcast it

simultaneously, leading to collisions, backoﬀs, re-

transmissions, etc.). Several attempts were made to

reduce the overhead of ﬂooding in reactive routing

protocols (e.g., [6,16]). For example, Ko and Va-

idya [16] proposed the
location aided routing

(LAR) scheme, in which the Global Positioning

System (GPS) is used to localize path queries and

limit their propagation. A similar objective is

achieved in [6] but without the need for GPS-based

location information. Note that such techniques

are aimed at on-demand routing approaches, and

are not applicable to table-driven proactive pro-

tocols like OSPF.

The overhead of ﬂooding has also been

addressed in the context of establishing multicast

trees (e.g., [5]). In [5] the authors use consecutive

ﬂooding of a multicast request (a technique known

as expanding rings) to establish a multicast tree for

a given set of receivers. This is somewhat similar to

ﬂooding a packet with a limited time-to-live (TTL)

value, where the TTL value in incrementally in-

creased until all receivers are included in the

multicast tree.

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

277

2.2. Tree-based broadcasting

State
dissemination
based
on
tree-based

broadcasting appears in the literature in two

forms: single broadcast tree (SBT) and multiple

broadcast trees (MBT). In the SBT approach, all

nodes compute a common broadcast tree (e.g., a

spanning-tree), and every node marks its own links

on that tree. Every node then receives LSAs via

one of its marked links and forwards the LSAs

through its other marked links. The SBT approach

has two main disadvantages. First, it results in an

unbalanced load distribution since LSAs are sent

over a ﬁxed subset of the network links (i.e., the

links that belong to the broadcast tree). Second, it

is quite possible for nodes that are neighbors

according to the network graph to lie far away

from each other on the broadcast tree, a situation

that delays the convergence of the routing proto-

col. In [3] the authors explored the viability of the

SBT approach for state dissemination in the PNNI

protocol. They provided a distributed spanning-

tree algorithm for determining the broadcast tree.

However, ﬁnding this tree and maintaining it in a

consistent manner involves complex operations

such as exchanging extra control packets besides

LSAs and executing the spanning-tree algorithm in

a distributed manner.

In the MBT approach, every node has its own

broadcast tree (e.g., a shortest path tree). For

illustration, consider the trees originating from

nodes 1 and 3 in Fig. 2. The LSAs originating from

a given node are disseminated over that node’s

broadcast tree. For example, node 1 generates an

LSA and sends it to nodes 2 and 3. However, only

node 2 forwards this LSA to node 4 (according to

the broadcast tree of node 1). To disseminate

LSAs over their originators’ broadcast trees, every

node needs to know the broadcast trees of all other

nodes. This can be done as follows. Every node

determines its parent and children on every

broadcast tree and stores these parent–children

relationships in a table [14]. Fig. 3 illustrates an

example. Let
Tibe the broadcast tree originating

from node i, i ј 1; 2; . . . ; n, where n is the number

of nodes in the network. Consider the representa-

tion of
T1at node 2. Since node 2 has only one

child on T1(namely, node 4), it marks node 4 as its

child in the ﬁrst row of its table. So whenever node

2 receives an LSA originating from node 1, it

forwards this LSA to node 4 only. Node 2 also

stores its parent on T1(namely, node 1) in the ﬁrst

row of its table. Since LSAs are disseminated over

diﬀerent shortest-path trees, the MBT approach

provides some form of load balancing. The con-

vergence time of this approach is also faster than

that of the SBT approach.

A key issue in the MBT approach is how to

determine the broadcast trees in a distributed

manner. Previously proposed approaches achieve

that through additional control packets (besides

the LSAs) and by relying on protocols that execute

some variant of the shortest path algorithm [4,14].

This complicates the establishment and mainte-

nance of consistent broadcast trees. The main

objective of these complicated mechanisms is to

always disseminate LSAs over the broadcast trees.

In [14] the authors addressed the issue of deter-

mining broadcast trees while the topology infor-

mation is still being disseminated over these trees.

In [4] the authors considered the idea behind re-

verse-path forwarding (RPF) in [11] and proposed

a new topology dissemination protocol called

TBRPF, in which broadcast trees are computed

based on full topological information received

over the broadcast trees themselves. In TBRPF,

every node executes Dijkstra’s algorithm to

determine a reverse minimum-hop tree, and then

exchanges some information with neighbors to

determine its parent and children from the stand-

points of other nodes. Although TBRPF provides

more reliability than other existing methods, it

1

2

3

(a)

4

1

2

3

(b)

4

suﬀers from the overhead associated with com-

puting the trees and communicating with neigh-

bors whenever a topological change occurs. The

ideas behind SBT and MBT have also been used in

various multicast protocols (e.g., CBT, DVMPR,

Fig. 2. Multiple broadcast trees originating from nodes 1 and 3.

PIM[12,17,26]). Speciﬁcally, SBT is similar to the

278

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

shared multicast trees while MBT is similar to

source-based multicast trees. In general, multicast

protocols are being designed to optimize the per-

formance for a subset of nodes (receiving nodes).

In our case, however, we try to provide better

performance in broadcasting sender’s packets to

children

1 3 4

1
n n
y
1

2
y
y y
–
3
n n n
3

4
n n n
4

y : yes

n : no

T1

T2

T3

T4

all nodes in the network.

3. Hybrid dissemination mechanism

In this section, we ﬁrst introduce our Hybrid

Flooding and Tree-based Broadcasting (HFTB)

approach and prove its correctness. We then dis-

cuss how it can be integrated into OSPF. Finally,

children

2 3

1
y y
–
2
n n
2

3
n n
3

4
n n
3

1

2

3

children

1 2 4

1
n n n
1

n n n
2

2

3
y y y
–
4
y
n
n
4

4

children

2 3

1
n n
2

2
n n
2
3
n n
3

4
y y –
we compare the overhead of HFTB with that of

ﬂooding and pure tree-based broadcasting using

analytical and simulation results. For now, we

assume that the underlying network consists of a

single area (i.e., domain) and that no link failures

take place within the standard OSPF update

interval (30 min). In later sections, we modify

HFTB to deal with topologies that exhibit fre-

quent link failures and we also address its exten-

sion to hierarchical OSPF-based networks.

3.1. HFTB and its correctness

As indicated before, the 30 min update interval

of OSPF [18] is suﬃcient for the relatively static

cost metric, but it is not enough for other link

parameters (e.g., available bandwidth) that may

change several times within the 30 min period.

Such dynamic parameters need to be frequently

disseminated, e.g., using triggered updates. The

objective of HFTB is to disseminate triggered

LSAs using tree-based broadcasting while con-

tinue to use ﬂooding for disseminating the rela-

tively
static
cost
metric
and
connectivity

information every 30 min.

Basically, HFTB is similar to previous MBT

approaches in the sense that every node maintains

the same parent–children relationships, as shown

in Fig. 3. However, in contrast to previous MBT

Fig. 3. Representing the parent–children relationships of the

broadcast trees in the MBT approach.

the update interval. No extra control packets or

complex protocols are needed to establish the

broadcast trees.

The broadcast trees are established as follows.

Let LSAudenote a ﬂooded LSA that was gener-

ated by some node u. Suppose that LSAuarrives at

some node i for the ﬁrst time through node j, as

shown in Fig. 4. Node i selects node j as its parent

from the standpoint of node u and acknowledges

node j. When node j receives the acknowledgment,

it records node i as its child from the standpoint of

node u. If LSAuarrives at node i again via another

node v, then node i acknowledges the LSA as in

OSPF without establishing a new parent–child

relationship. After the ﬂooding of the ﬁrst LSAu,

every node can determine its parent and children

on the broadcast tree of node uрTuЮ. In contrast to

previous approaches that establish the broadcast

trees with respect to (w.r.t.) the minimum hop

count, HFTB dynamically determines the broad-

cast trees w.r.t. the actual minimum delay, and

v

approaches, HFTB uses ﬂooding of the ﬁrst LSA

in every 30 min update interval to establish the

broadcast trees, which are then used to dissemi-

u

j

i

nate subsequent ‘‘refresh’’ LSAs generated
within

Fig. 4. Establishing broadcast trees in the HFTB approach.

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

279

broadcasts LSAs over these trees, suggesting that

HFTB converges as fast as ﬂooding.

p ј hv0ј s; v1; . . . ; vkј ui. Without loss of gener-

ality,
we
assume
that
tЅs ј 0.
So,
tЅu ј

One concern here could be whether the ini-

Pk

iј1dрvi1;viЮ.

tially established optimal broadcast trees will

stay optimal for the next 30 min. It is true that

the initially optimal trees might not stay opti-

mal for the next 30 min due to delay variations

in the network. However, the delay variation on

trees can be reduced by giving priority to OSPF

packets. In fact, existing routers (e.g., Cisco

IOS) assign an IP precedence value of 6 (i.e.,

Internetwork Control) to OSPF and other con-

trol packets on the control plane, and process

them before queued data packets (see
http://
www.cisco.com/warp/public/105/rtgupdates.html
for details). Giving priority to OSPF and other

control packets means that these packets will

not see the high delay variations seen on the

data paths. Therefore, from the point of view of

the
refresh
LSAs, the ‘‘optimal’’ path obtained

based on ﬁrst-time (ﬂooded) LSAs will likely be

stable (i.e., its delay does not change signiﬁ-

cantly) over a 30 min period.

Theorem 1
(Correctness of HFTB).
Consider a

network
G ј рV ; EЮ
with bidirectional links. Sup-

pose that an arbitrary node s 2 V
generates an LSA

and floods it throughout the network. Furthermore,

suppose that the LSA experiences some delay dрu; vЮ

while being processed and forwarded from node u to

node v. Under HFTB, Tsis established throughout

the network in finite time (i.e., every node can

determine its parent and children on Ts). Moreover,

Tsconverges to a shortest-paths tree.

Proof. Initially, Tsconsists of only node s. So, the

theorem is trivially true. Consider Tsafter ﬂooding

LSAsthrough some nodes in the network. In

ﬂooding, an arbitrary node u may receive the same

LSAsseveral times. However, node u forwards the

incoming LSAsto its neighbors only once, upon

the ﬁrst arrival of this LSA. In addition, node u

selects its parent on Tsby acknowledging the node

from which LSAswas received for the ﬁrst time.

Subsequent arrivals of LSAsat node
u
are

acknowledged without establishing a parent–child

relationship. Let tЅu
be the time at which node u

receives LSAsfor the ﬁrst time along the path

To prove that
Tsis a shortest-paths tree, we

need to show that the path p does not contain any

cycle and that
p is the shortest path from s to u.

The proof follows similar arguments to those used

in [10, pp. 523–525] for shortest-paths trees.

However, instead of the process of relaxing a link

рu; vЮ in [10], we consider the process of forwarding

ﬁrst-time LSAsfrom node
u
to node v. So it is

suﬃcient to show that forwarding LSAsfrom node

u
to node
v upon its ﬁrst arrival is the same as

relaxing the link
рu; vЮ
in the computation of a

shortest-paths tree.

In computing the shortest-paths tree, a node
u

with minimum tЅu
is selected and every link рu; vЮ

is considered for relaxation in a sequential manner.

If
tЅu ю dрu; vЮ < tЅv , then link
рu; vЮ
is relaxed,

i.e., the parent of node v is set to node u and tЅv
is

set to tЅu ю dрu; vЮ. In HFTB, paths are explored

in parallel. So node
u
starts forwarding LSAs
through рu; vЮ
as soon as it receives LSAsfor the

ﬁrst time. In other words, a node u with minimum

tЅu
is automatically selected in parallel and every

link рu; vЮ is considered. If node v receives LSAsfor

the ﬁrst time via node u, then the parent of node v

is set to node u and tЅv
is set to tЅu ю dрu; vЮ; this is

the same as relaxing
рu; vЮ
in [10]. Otherwise, no

parent–children relationship is established again.

The rest of the proof follows the same proofs in

[10, pp. 523–525].

Finally, forming the broadcast tree
Tstakes ﬁ-

nite time since in ﬂooding every node receives

LSAsin a ﬁnite amount of time.
h

3.2. Integrating HFTB into OSPF

OSPF can be easily modiﬁed to support the

proposed approach, as outlined in Fig. 5. In gen-

eral, we make three modiﬁcations to OSPF. The

ﬁrst one is to designate one of the unused bits of

the Options ﬁeld in the LSA header as Flooding or

Tree-based broadcasting
(FT)-bit. If the FT-bit is

set to 0, the LSA will be ﬂooded throughout the

network as in the standard OSPF and will be used

to establish the broadcast tree of that LSA. If this

bit is set to 1, then the LSA will be disseminated

280

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

Fig. 5. Integrating HFTB into the OSPF protocol.

over its originator’s broadcast tree. The FT-bit is

also used in LSA ACKs. In this case, if the FT-bit

is 1, then this is an indication that the receiver has

selected the sender as its parent; otherwise, the

receiver has a diﬀerent parent. When a sender node

receives an ACK with FT-bit ј
1, this sender re-

cords the receiver as its child. To maintain these

parent–children relationships, we need to create a

table at each node, which is the second required

modiﬁcation. The third modiﬁcation is to add/

change some steps in the ﬂooding procedure of

OSPF (as listed in Fig. 5), so that the broadcast

trees can be established during the ﬂooding of the

ﬁrst LSAs and used during the tree-based dis-

semination of the subsequent LSAs generated

within the 30 min interval.

We implemented HFTB, starting with the

OSPF’s source code provided in [20] and modify-

ing this code to account for the above required

changes. The implementation was tested on a

‘‘real’’ network of four Linux-based PCs acting as

OSPF nodes. It was also tested using the simula-

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

281

tion tool provided in [20]. The details of our

modiﬁcations and implementations are summa-

rized in Appendix A and described in detail in a

technical report that is available online at

www.cs.utsa.edu/~korkmaz/research/hftb.

3.3. Performance comparisons

To compare the overheads of various dissemi-

nation mechanisms, we consider two performance

is 20 bytes while the size of an LSA packet

originating
from
node
u
is
S рuЮ ј 20 ю 4 ю

lрuЮр12 ю 4qЮ
bytes, where
lрuЮ
is the number of

advertised links (i.e., the degree of node u) and q is

the number of parameters associated with every

link. If no link failure occurs in a given 30 min

interval, the TNLA and TSLA of ﬂooding are

TNLAfloodingј2рk ю 1Юnm;
р1Ю

Xn

measures: (1) the total number of LSAs and ACKs

(TNLA), which gives an indication of the pro-

TSLAfloodingј рk ю 1Ю

uј1

mЅSрuЮ ю 20 :

р2Ю

cessing overhead, and (2) the total size (in bytes) of

the exchanged LSAs and ACKs (TSLA), which

gives an indication of the communications over-

head. These measures can be determined analyti-

cally under some ideal link conditions, namely, no

LSA losses, no retransmissions, and no implicit

ACKs. We ﬁrst present such results for ﬂooding,

HFTB, and pure tree-based broadcasting. We then

compare these results with the ones obtained via

simulations, using the tool provided in [20]. Note

that our analytical results are intended to provide

lower bounds on the TNLA and the TSLA. We

simply use the analytical results (the lower bounds

on the TNLA and the TSLA) to illustrate the

impacts of diﬀerent system parameters on the

performance of the existing and proposed solu-

tions, and compare the general performance trends

in these solutions. In other words, our analytical

results are not intended to replace the simulation

results, which take into account the dynamic

behavior of the system at hand. In our emulations/

simulations, we relax the simplifying assumptions

made for analytical results and measure the TNLA

and TSLA of the exiting and proposed schemes

under the actual operation of OPSF.

3.3.1. Analytical results

Consider a network with n nodes and m links.

In the above equations, we assume that every LSA

is explicitly acknowledged. So when two neigh-

boring nodes, say
u and v, receive the same LSA

from a third node, one of them, say u, forwards it

ﬁrst to the other, which in turn acknowledges the

LSA. As a result, the total number of forwarded

LSAs in the network will be the same as the total

number of ACKs (i.e., half of the analytically

computed TNLA are LSAs). In a real network,

however, u
and v may forward the same LSA to

each other around the same time. In this case, each

of them can be sure that the other has the LSA,

and there is no need to generate an explicit ACK.

Compared to the scenario assumed in the analysis,

there is one additional generated LSA but one less

ACK, which means that the actual TNLA value is

roughly equal to the analytically computed one

(the latter is slightly smaller because the analysis

ignores retransmissions of LSAs). As for the

TSLA measure, its actual value will be much larger

than the analytically predicted one, because there

are more LSAs than ACKs in the actual TNLA

value.

In pure tree-based broadcasting, LSAs are dis-

seminated over trees, each consisting of
n
1

links. Thus, the TNLA and TSLA of tree-based

broadcasting are

Each node u periodically (every 30 min) generates

a router-LSA and ﬂoods it as in the standard

OSPF. Within the 30 min period, each node may

be triggered to generate additional router-LSAs

that advertise the most recent values of the link-

TNLAtreeј2рk ю 1Юnрn
1Ю;

Xn

TSLAtreeј рk ю 1Ю
рn
1ЮЅSрuЮ ю 20 :

uј1

р3Ю

р4Ю

state parameters. Let k indicate the average num-

ber of triggered advertisements within a 30 min

interval. Recall that the size of an ACK packet

Note that establishing the broadcast trees also

involves some protocol overhead, which we are

ignoring since our focus is on the TNLA and

282

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

TSLA during the state dissemination phase. Also

note that there are no implicit ACKs in pure tree-

based broadcasting.

For HFTB, no extra protocol overhead is in-

curred due to the establishment of broadcast trees

during the ﬂooding of the ﬁrst LSA. The TNLA

and TSLA of HFTB are

TNLAHFTBј2рnm ю knрn
1ЮЮ;
р5Ю

Xn

processing overhead) of compared schemes in-

creases linearly. However, the TNLA of ﬂooding

increases at a higher rate than the other two

schemes. Fig. 7 depicts the TSLA of various dis-

semination mechanisms versus m, q, and k. As m

increases, the TSLA (and thus the communica-

tions overhead) of ﬂooding increases quadrati-

cally, while this increase is linear in other

mechanisms. As shown in the ﬁgure, the TSLA of

all mechanisms increases linearly with q. However,

TSLAHFTBј

uј1

mЅSрuЮ ю 20

the TSLA of ﬂooding increases at a higher rate

than those of tree-based mechanisms. The TSLA

ю kXn

uј1

рn
1Ю:ЅSрuЮ ю 20 :

р6Ю

of all mechanisms is linearly proportional to
k.

Once again, the TSLA of ﬂooding increases at a

much higher rate than that of other mechanisms.

In practice, some ﬁrst-time LSAs will be implicitly

acknowledged during the ﬂooding phase (but not

during the tree-based broadcasting phase). So the

relative improvement of HFTB over ﬂooding will

be more pronounced in practice than what is being

predicted by the above equations (as shown later

in simulations).

The TNLA depends on three parameters

рn; m; kЮ
while the TSLA depends on four param-

eters рn; m; q; kЮ. In the numerical examples below,

we consider topologies with n ј 100, and we vary

m, q, and
k. The same trends have been observed

for other values of n. Fig. 6 depicts the TNLA of

various dissemination mechanisms versus m and k.

As
m
and
k
increase, the TNLA (and thus the

In general, pure tree-based broadcasting is ex-

pected to provide the best possible eﬃciency in

state dissemination, given that the broadcast trees

are already established. However, establishing such

trees in the pure tree-based approach requires

complex algorithms and protocols to maintain

consistent trees throughout the network. Because

of the complexities and/or unreliabilities of previ-

ous tree-based mechanisms, current Internet pro-

tocols do not use tree-based broadcasting, and

instead rely on ﬂooding despite its high communi-

cations overhead. The proposed HFTB mechanism

takes advantage of both ﬂooding and tree-based

broadcasting. HFTB is easy to incorporate into

the current link-state protocols and provides

14

x 105

Flooding

n=100, q=4, and =6

9

8

x 105

Flooding

HFTB

n=100, m=400, and q=4

12

10

8

6

4

2

0

HFTB

Tree-based Broadcasting

7

6

5

4

3

2

1

0

Tree-based Broadcasting

100
200
300
400
500
600
700
800
900
1000

m

2

4

6

8

10

Fig. 6. TNLA (processing overhead) versus m and k (based on analysis).

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

283

8

4.5 x 10

4

Flooding

HFTB

n=100, q=4, and =6

7

9 x 10

8

Flooding

HFTB

n=100, m=400, and =6

7

12 x 10

Flooding

HFTB

n=100, m=400, and q=4

3.5

3

2.5

2

1.5

1

0.5

0

Tree-based Broadcasting

7

6

5

4

3

2

1

Tree-based Broadcasting

10

8

6

4

2

0

Tree-based Broadcasting

100 200 300 400 500 600 700 800 900 1000

m

1

2

3

q

4

5

2

4

6

8

10

Fig. 7. TSLA (communications overhead) versus m, q, and k (based on analysis).

signiﬁcantly better performance than ﬂooding. It is

particularly advantageous in networks that sup-

port QoS routing, where the values of q and k are

typically larger than those of best-eﬀort networks.

3.3.2. Simulation results

We also compare the performance of our

implementation of HFTB against ﬂooding using

the simulation tool ospfd_sim provided in [20].

This tool takes an entire OSPF network as a con-

ﬁguration ﬁle and executes a copy of the actual

ospfd
software for each router, allowing us to

test/evaluate actual implementations (and modiﬁ-

cations) of the OSPF protocol as if we had real

OSPF routers. In our simulations, we use the

topologies shown in Fig. 8, which are modiﬁed

versions of the ANSNET topology [9]. The con-

ﬁguration ﬁles for these topologies are available

online
at
www.cs.utsa.edu/~korkmaz/research/
hftb. Since the general trends in TNLA and TSLA

as functions of k and q are clear, we just select one

reasonable value for k and q. For example, we as-

21

10
18
22

23

sume that each link is associated with three QoS

parameters (i.e., q ј 3) whose values are refreshed

ﬁve times within each 30 min period (i.e., k ј 5). A

smaller value would not show clearly the diﬀerence

between HFTB and ﬂooding. On the other hand, a

larger value would require more simulation time

and resources, without necessarily depicting a dif-

ferent trend in the behavior. For each topology, the

simulation program was ran for three hours. The

obtained TNLA and TSLA values, normalized and

averaged over a 30 min interval, are shown in Fig.

9. The ﬁgure also shows the TNLA and TSLA

values computed using the previous formulas. For

the TNLA, the analysis and the simulations pro-

duce comparable results, with the diﬀerence

attributed to the random initialization of nodes in

the simulations and the enabling of LSA retrans-

mission. In the case of the TSLA, the diﬀerence

between the analysis and the simulations is signif-

icant, particularly for ﬂooding. The cause of this

big gap is mainly attributed to the assumption used

in the analysis that all LSAs are sent in one

21

23

10
18

4

3

1

5

2

6

7

9

8

13

17

11

14

16

12

15

19

20

31

26

32

28

24

27

29

30

25

4

3

1

5

2

6

7

9

8

13

17

16

11

14

12

15

19

31

20

26

28

32

24
22

27

29

30

25

Fig. 8. Modiﬁed 32-node ANSNET topologies with 54 and 91 links.

284

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

Fig. 9. TNLA and TSLA versus m for ﬂooding and HFTB (based on analysis and simulation).

direction over a link and explicitly acknowledged in

the other direction. In the simulations, however,

several LSAs are sent in both directions over a link

and implicitly acknowledged, resulting in more

LSAs than ACKs. For example, in one simulation

run on the network with 54 links, we counted

14,994 LSAs and 6148 ACKs in the case of ﬂood-

ing. Their total (21,142) is the TNLA value, which

is close to its analytically obtained counterpart

(20,736). In summary, the number of implicit

ACKs (and thus the number of LSAs) increases

during actual ﬂooding, resulting in signiﬁcantly

higher TSLA than what is analytically expected. In

case of HFTB, some implicit ACKs are used during

the ﬂooding of the ﬁrst-time LSAs. However, since

subsequent LSAs are disseminated over the

broadcast trees, implicit ACKs are no longer used,

resulting in only a slightly higher TSLA than what

is analytically expected. Accordingly, we should

expect that in practice, HFTB will provide a much

better performance gain over ﬂooding than what is

analytically predicted.

4. Enhanced hybrid mechanism

The previously discussed HFTB mechanism

computes the broadcast trees once every 30 min.

However, due to topological changes, particularly

link failures, some broadcast trees may become

disconnected shortly after they have been updated.

If no action is taken to repair these trees, some

nodes may not receive the up-to-date values of link

parameters for at most 30 min. The basic HFTB is

still a viable solution if the probability of a link

failure is low or if the underlying path selection

algorithm is capable of dealing with inaccurate

state information. However, if highly accurate

state information is needed at every node, then the

disconnected trees should be repaired during
the

tree-based broadcasting phase. This can be done

by using a slightly modiﬁed version of HFTB,

which we refer to as HFTB with repair tree option

(HFTB-RT).

In the absence of link failures, HFTB-RT is

similar to the basic HFTB. When a link fails,

HFTB-RT dynamically repairs the disconnected

broadcast tree(s) by switching the LSA of that tree

to the ﬂooding mode at the disconnection point.

This is similar to the node at disconnection point

instantiating the LSA. As an example, consider the

situation in Fig. 4. Suppose that link рj; iЮ has gone

down, disconnecting
Tu. Upon detecting the link

failure, node j realizes that it has lost its child i

from the standpoint of node u while node i has lost

its parent. Now assume that node
j receives an

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

285

LSA from node
u
in tree-based broadcasting

mode. In this case, since node j knows that node i

and other successors will not receive LSAufrom

any other nodes, it will ﬂood LSAuthroughout the

network to make sure every node gets the same

LSA. Although the LSA is ﬂooded with the same

sequence number, we mark some bits in the header

to indicate that this LSA is more recent than the

previous ones so that the nodes that already have

it will not discard it. For example, as shown by the

dashed arrows in Fig. 10, node
u
receives LSAu
ﬂooded back from j. However, node
u
does not

discard it, since the RT-bit that we describe later in

this LSA is set to 1. So node u updates its database

and further ﬂoods this LSA to other neighbors. At

some point during this ﬂooding, node v receives

the LSA and forwards it to node i. Note that in

general it is possible that LSAumight reach node i

through a node other than node u or v. In any case,

the node from which node i receives the LSAuﬁrst

time is selected as the new parent of node i on Tu.

Accordingly, node i sends an ACK message to that

node (e.g.,
v), indicating the establishment of a

new parent–child relationship. When node
v
re-

ceives this ACK, it records node i as a child. Note

that the objective here is to repair the tree rather

than establishing it from scratch. So if a node re-

ceives the same LSA from its child, then this node

should not select its child as its parent. For

example, in Fig. 10, node
u
gets the LSA back

from node j, but does not select it as a parent. As a

result, the broadcast tree originating from node u

is repaired, as shown by the solid arrows in Fig. 10.

Also note that the same LSA is sent over some

links twice, increasing the TNLA and TSLA.

However, our simulations indicate that HFTB-RT

still gives much better performance than ﬂooding.

Integrating HFTB-RT into OSPF can be done

as described in the pseudo-code in Fig. 11. In

v

u
i

j

Fig. 10. Repairing broadcast trees in HFTB-RT.

addition to the OSPF modiﬁcations described in

Section 3.2, we need to make two other changes.

First, we need to designate a second unused bit in

the Options ﬁeld of the LSA header as the Repair

Tree (RT) bit. Following a link failure, nodes at

both ends of the failed link generate new LSAs

with RT-bit ј 1 and ﬂood these LSAs throughout

the network. These LSAs will be used to repair the

broadcast trees. Suppose that some node i receives

LSAuwith FT-bit ј 0 and RT-bit ј 1 via some

node v. Node i ﬁrst checks whether it has a parent

on
Tu. If not, it selects node v as its parent and

sends an ACK message with FT-bit ј 1 and RT-

bit ј 0 to node v. Upon receiving this ACK, node v

records node i as its child.

The second change is to add a new step in the

ﬂooding procedure of OSPF, as follows. If the link

connecting node i to one of its children on the tree

of node u goes down, then node i should switch an

incoming LSA of node u
from tree-based broad-

casting mode to ﬂooding mode (i.e., change the

FT-bit and the RT-bit from 1 and 0 to 0 and 1,

respectively). Node i then ﬂoods that LSA to all

neighbors including its own parent. During this

ﬂooding, those nodes that have lost their parents

due to the link failure can select a new parent,

repairing the disconnected trees. Again by modi-

fying the OSPF’s source code provided in [20], we

have implemented HFTB-RT and tested our

implementation using both a real network with

four OSPF nodes and also using the simulation

tool in [20].

When no link failures take place, HFTB-RT

and HFTB have the same TNLA and TSLA per-

formance. Under link failures, HFTB-RT uses the

ﬂooding mode more often than HFTB, and its

TNLA and TSLA values increase with the fre-

quency of failures. Analytical estimation of these

values is not possible at present, since it requires

knowledge of the number of trees that become

disconnected following a link failure. Instead, we

use simulation results to compare ﬂooding and

HFTB-RT. Again we use the ANSNET topologies

and we let
q ј 3 and k ј 5. The simulations are

ran for three hours with various numbers of link

failures happening at diﬀerent times within the

three hours. The TNLA and TSLA values aver-

aged over a 30 min interval are shown in Fig. 12

286

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

Fig. 11. Integrating HFTB-RT into the OSPF protocol.

for the 54-link topology (similar trends were also

observed for the 91-link topology).

As the number of link failures increases, the

TNLA and TSLA of ﬂooding decrease while those

of HFTB-RT increase gradually. The reason for

this is that, since the number of active links in the

network decrease due to link failures, the ﬂooding

sends LSAs through less number of links and thus

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

Fig. 12. Overhead of HFTB and ﬂooding versus the number of link failures (simulations).

287

reduce the TNLA and TSLA. In HFTB-RT,

however, since some LSAs in tree-based broad-

casting mode are switched to ﬂooding mode in

case of link failures and ﬂooded throughout the

network, the TNLA and TSLA of HFTB-RT in-

crease gradually with the increase of link failures.

However, HFTB-RT is still giving better perfor-

mance than the ﬂooding under moderate number

of link failures. Note that as the number of link

failures increases, the network becomes more

sparse (i.e., looks like a tree). In this case, ﬂooding

may perform better than HFTB-RT. In practice,

however, core networks do not experience frequent

link failures that lead to sparse topologies.

Therefore, HFTB-RT is a viable solution for dis-

seminating QoS-related state information accu-

rately and eﬃciently in practice.

5. Extending HFTB(-RT) to OSPF-based hierar-

chical networks

For scalability reasons, OSPF supports two-

level hierarchical routing, in which the network is

divided into areas. In each area, the area border

routers capture the routing information within that

area, summarize this information into
summary-

LSAs, and then ﬂood these LSAs throughout the

other areas and their border routers. So far, we

have explained the operation of HFTB and

HFTB-RT within an area. We now explain how to

use/extend the proposed hybrid approach to hier-

archical OSPF networks. First, note that it is

possible to use HFTB(-RT) within areas while still

using ﬂooding between areas. This may be par-

ticularly appropriate when the number of areas is

small or when the inter-area connectivity is sparse.

Basically, since OSPF also uses ﬂooding be-

tween areas (but involving diﬀerent types of

LSAs), a similar approach to the one used within

an area can be used here. We need to compute and

maintain broadcast trees for the upper layer of the

hierarchy, and to make the HFTB-related modi-

ﬁcations (FT-bit in the router LSAs) to the other

types of LSAs (e.g., summary LSAs) that are ex-

changed between areas. The rest is similar to what

was described before. In other words, an area

border router will ﬂood the ﬁrst summary LSA

within the 30 min interval so that each node can

establish the broadcast trees for upper layer areas.

After the ﬂooding of the ﬁrst summary LSA, all

the nodes within the network would use the

broadcast trees to disseminate the subsequent

summary LSAs throughout the network. Note

that the broadcast trees established in for upper

layer would be consistent with the ones created

within the area because intra-area routing has

precedence over inter-area routing. We are cur-

rently in the process of making these modiﬁcations

to the source code of the OSPF.

288

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

6. Conclusions and future work

We provided a hybrid state dissemination

mechanism that combines ﬂooding and tree-based

broadcasting (HFTB) to achieve simple yet reliable

and eﬃcient link-state dissemination. Such a

mechanism is particularly needed in the context of

QoS routing, which involves frequent dissemina-

tion of several dynamic parameters. In contrast to

previous
tree-based
broadcasting
approaches,

which require complex algorithms and protocols to

determine and maintain the broadcast trees, the

proposed HFTB simply determines the broadcast

trees by ﬂooding ﬁrst-time LSAs. Subsequent LSAs

that update the QoS-related state of an existing

link(s) are then disseminated over the broadcast

trees. To deal with link-failures, we provided a

modiﬁed version of HFTB, called HFTB-RT that

can repair disconnected trees. We described how to

integrate the proposed hybrid mechanisms into

OSPF. For this purpose, two of the currently un-

used bits of the Options ﬁeld in the LSA header are

deﬁned as FT-bit and RT-bit. Using these bits, we

slightly modiﬁed the ﬂooding procedure of OSPF

to determine the broadcast trees and to disseminate

LSAs over these trees. Accordingly, we imple-

mented HFTB and HFTB-RT by modifying the

existing source code of OSPF. We compared the

proposed mechanisms with the ﬂooding using

numerical and simulation results. If there are no

link failures, HFTB-RT has the same performance

of HFTB. Otherwise, it incurs some extra overhead

over HFTB. However, by using HFTB-RT, nodes

dynamically repair disconnected broadcast trees in

the case of link failures and acquire the most recent

LSAs in a simple and eﬃcient manner. In spite of

this overhead, the HFTB-RT provides signiﬁcantly

better performance than currently used ﬂood-

ing while maintaining the simplicity and reliabil-

ity of ﬂooding under reasonable number of link

failures. Moreover, in simulation we observed that,

the ﬂooding procedure of OSPF sends the same

LSAs over some links on both directions and

counts them as implicit ACKs. Since this results in

having more LSAs than ACKs in the network, the

TSLA of the ﬂooding excessively increases in

practice. However, the proposed tree-based hybrid

approach avoids implicit ACKs and thus provides

much better TSLA performance than the ﬂooding

in practice.

As a future work, we plan to implement the

proposed hybrid mechanism under the hierarchical

structure of OSPF while investigating how to

further simplify it and deploy in an incremental

manner. We also study the stability and perfor-

mance of QoS-based path selection algorithms

under QoS-enhanced OSPF using the proposed

mechanism. Finally, we plan to investigate better

analytical models that can give good accuracy

when compared with simulations.

Appendix
A. OSPF-based
implementation
of

HFTB(-RT)

Both HFTB and HFTB-RT have been imple-

mented by modifying the OSPF source code pro-

vided in [20]. We now explain the main features of

our implementation. A detailed description of this

implementation along with the source code can be

found
at
www.cs.utsa.edu/~korkmaz/research/
hftb. Implementation wise, HFTB can be regarded

as a special case of HFTB-RT, so we only describe

the implementation of HFTB-RF.

As indicated before, integrating HFTB-RT into

OSPF requires making three main modiﬁcations to

OSPF: (1) redeﬁning two of the unused bits of the

Options ﬁeld of the LSA header, (2) creating and

maintaining a parent–children table at every node,

and (3) adding and changing some steps in the

OSPF algorithm at a node.

A.1. Redeﬁning unused bits

The header of an OSPF LSA has several unused

bits in the Options ﬁeld. We designated the two

most signiﬁcant bits of this ﬁeld as FT-bit and RT-

bit, respectively. To access/check/set these bits

later, we deﬁned the following masks in hexadec-

imal format:

SPO_FT ј 0x80

SPO_RT ј 0x40

These masks are included in spfpkt.h, where

all other bits are deﬁned.

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

289

A.2. Creating and maintaining a parent–children

table

In Fig. 3, we described the parent–children

table as a two-dimensional array. In practice,

the number of nodes and
the number of

neighbors are not known in advance, so we

need a dynamic data structure to maintain the

parent–children relationships as they become

realized. To provide a proof-of-concept, we

simply used a linked list implementation. How-

ever, one can use binary trees or hash tables to

improve the eﬃciency in accessing the entries of

the parent–children table.

As shown in Fig. 3, each entry of the parent–
children table consists of three components: origin,

parent, and a list of children. To maintain such

entries using a linked list, we ﬁrst deﬁned the fol-

lowing classes in a new ﬁle called pctable.h.

class PCTable{

public:

rtid_t origin;

SpfNbr *parent;

Children *childlist;

PCTable *next;

/* some flags that are used in

HFTB-RT */

int need_flood;

seq_t repair_seqno;

int repaired;

PCTable();
/*
Constructor
to

initialize the parent–children

table */

};

class Children{

public:

SpfNbr *child;

Children *next;

Children(){/*
Constructor
to

initialize the children linked

list */

child ј 0;

next ј 0;

}

friend class PCTable;

};

As shown above, the PCTable class also con-

tains few other ﬂags for each entry, which are used

to repair trees in HFTB-RT. To incorporate the

parent–children table into OSPF, we included the

following into the original
OSPF class
whose

declaration is given in ospf.h: (a) a pointer to the

parent–children table, and (b) new functions to

update or access the entries of the parent–children

table:

class OSPF{

. . .

PCTable *pctable_head;

. . .

void add_parent_pctable(rtid_t

orig, SpfNbr *par);

/* Origin and parent nodes are

given.If origin does not ex-

ist, it is created and parent

is added.Otherwise, the

given parent is added to the

existing origin.*/

void add_child_pctable(rtid_t

orig, SpfNbr *ch);

/* Origin and the child node are

given.If the child is not

already present, it is added to

the children list of the

origin.Otherwise,
it
is
not

added.*/

void delete_child_pctable(rtid_t

orig, SpfNbr *ch);

/* Origin and the child node are

given.If the child is not

present, it is not deleted.

Otherwise, it is deleted

from the children list of the

origin.*/

bool is_child_pctable(rtid_t

orig, SpfNbr *ch);

/* Origin and child node are

given.Returns true if the

given child node is present in

the origin’s children list.

Otherwise, returns false.*/

290

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

SpfNbr *get_parent_pctable(rtid_t
generating a new LSA, we reset the hftb ﬂag (i.e.,

orig);
set it to 0), making the node go into the ﬂooding

/* Given the origin, the parent
mode every 30 min.

node corresponding to it
In addition to the periodic generation of LSAs,

is returned.*/
our implementation allows for LSAs to be gener-

ated upon a trigger. This feature was implemented

/* The following four functions
in the new function hftb_lsas() in dbage.C

are used in HFTB-RT to set or
by modifying
refresh_lsas()
to generate

check the values of the flags
trigger-based LSAs.

need_flood and repaired that are

needed to deal with link failures
A.3.3. Upon the failure of a link

and disconnected trees */
The destructor of
SpfIfc class
which is in

void set_flood_pctable(SpfNbr *ch);
spfifc.C
is called. We added new statements

bool need_flood_pctable(rtid_t
into that destructor to set the need_flood ﬂag

orig);
in the parent–children table for every originator

void set_tree_repair_pctable
whose tree is disconnected as a result of that

(rtid_t orig, seq_t seqno);
link failure. This ﬂag is later used in the

bool need_tree_repair_pctable
flood() function to repair trees by setting the

(rtid_t orig, seq_t seqno);
RT-bit of a received LSA to 1 and ﬂooding that

LSA.

In the standard OSPF implementation, the

above functions are given in
ospf.C. In our

implementation, we put them in the newly created

ﬁle pctable.C.

A.3. Modifying OSPF procedures

The required modiﬁcations to OSPF procedures

were outlined in Fig. 11. We now describe how

such modiﬁcations were implemented. For ease of

exposition, we follow the same presentation order

of Fig. 11.

A.3.1. Upon becoming operational

The constructor of the OSPF class which is in

ospf.C is called. We included the followings into

that constructor: (a) the parent–children table is

initialized as an empty list (i.e., pctable_head

ј 0); (b) a ﬂag named hftb deﬁned in ospf.h is

set to 0, indicating that the node is initially in

ﬂooding mode.

A.3.2. Repeat every 30 min

The
refresh_lsas()
function of
OSPF

class which is in ospf.C is called. This function

periodically generates a new LSA describing the

state of its outgoing links. In this function, before

A.3.4. Upon generating a new LSA

The lsa_reorig() function in spforig.C

is called. If the node is in the ﬂooding mode (i.e.,

hftb ј 0), then the FT-bit is set to 0 for that LSA

while it is being built in the function rl_orig()

(which is in the ﬁle rtrlsa.C). After ﬂooding the

LSA to all the neighbors in the flood()
func-

tion, we set the hftb ﬂag is to 1, indicating that

the node is switching into the tree-based broad-

casting mode for the subsequent LSAs. If the node

is already in the tree-based broadcasting mode

(i.e., hftb ј 1), then the FT-bit of the generated

LSA is set to 1, again while it is being built in

rl_orig(). The LSA is then sent to all the nodes

in the children list using the flood() function.

To avoid sending the LSA to non-children nodes,

we
simply
added
few
if-statements
in
the

flood() function in spflood.C.

A.3.5. Upon receiving via node
j
an LSA that

originated from node u

The recv_update() function in spflood.C

is called. If the received LSA is the most recent

one, this function updates the link-state database

and calls the
flood()
function, in which the

following changes are made. Check the options

ﬁeld of the LSA. Then

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

291

1. if FT ј 0 and RT ј 0,

Node j is added as a parent to the originator u

in the parent–children table using
add_par-

ent_pctable(). The LSA is ﬂooded to all

neighbors except node j. An acknowledgement

is sent to node j, setting the FT-bit to 1.

2. if FT ј 0 and RT ј 1,

The received LSA is compared against the

database
copy
using
the
function

cmp_opts(). This function is added to the ﬁle

spflood.C.

/* In flooding mode, if the receiv-

ing node is chosen to be the parent

send an ACK to it with FT-bit set

to 1*/

int LSA::cmp_opts(LShdr *hdr){

LShdr *dbcopy;

/* Create network-ready version

of database copy */

dbcopy ј ospf->BuildLSA(this);

if
((dbcopy->ls_seqno ј ј hdr->

ls_seqno)
&&
(dbcopy->ls_opts

& 128) ј ј 128){

return 0;

}

else{ /* LSA most recent; add to

DB */

return 1;

}

}

If the node has a database copy with FT ј 1

and RT ј 0, then an acknowledgement is sent

to node j with the FT-bit set to 0. The LSA is

sent to all the neighbors except node j.

Otherwise, node
j
is added as a parent to the

originator u in the parent–children table using

add_parent_pctable(). An acknowledge-

ment is sent to node j with the FT-bit set to 1.

The LSA is sent to all the neighbors except node

j.

3. if FT ј 1,

If the ﬂag
need_flood
corresponding to

originator u
indicates that the broadcast tree is

disconnected (i.e.,
need_flood
is set to 1),

then the LSA’s FT-bit is set to 0 and the RT-bit

is set to 1. The ﬂag need_flood in the parent–

children table is set to 0 to indicate that the

disconnected tree has been repaired. The LSA is

sent to all neighbors including node
j. An

acknowledgement is sent to node j with FT-bit

equals to 1.

Otherwise, the LSA is sent to all the nodes in

the children list. An acknowledgement is sent to

node j with the FT-bit equals to 1.

A.3.6. Upon receiving an acknowledgement from

node j

The
recv_ack()
function in
spfack.C is

called. In this function, we made the following

changes:

(a) if the FT-bit in the received LSA’s options ﬁeld

is 1, then add node j to the children list of the

received LSA’s originator using the function

add_child_pctable();

(b) if the FT-bit in the received LSA’s Options

ﬁeld is 0, then delete node j from the children

list of the received LSA’s originator. Deleting

the child is done by using the function

delete_child_pctable().

References

[1] G. Apostolopoulos, R. Guerin, S. Kamat, S.K. Tripathi,

Quality of service based routing: A performance perspec-

tive, in: Proceedings of the ACMSIGCOMM’98

Conference,
Vancouver,
British
Columbia,
Canada,

August–September 1998, pp. 17–28.

[2] G. Apostolopoulos, D. Williams, S. Kamat, A. Guerin, R.

Orda, T. Przygienda, QoS routing mechanisms and OSPF

extensions. RFC 2676, IETF, August 1999.

[3] E. Basturk, P. Stirpe, A hybrid spanning tree algorithm

for eﬃcient topology distribution in PNNI, in: Proceedings

of the 1st IEEE International Conference on ATM

(ICATM’98), 1998, pp. 385–394.

[4] B. Bellur, R.G. Ogier, A reliable, eﬃcient topology

broadcast protocol for dynamic networks, in: Proceedings

of the INFOCOM’99 Conference, vol. 1, IEEE, New

York, 1999, pp. 178–186.

[5] K. Carlberg, J. Crowcroft, Building shared trees using a

one-to-many joining mechanism, ACMComputer Com-

munication Review 27 (1) (1997) 5–11.

[6] R. Castaneda, S.R. Das, Query localization techniques for

on-demand routing protocols in ad hoc networks, in:

Proceedings of the Fifth International Conference on

Mobile
Computing
and
Networking
(MobiCom’99),

August 1999, pp. 186–194.

292

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

[7] C.-C. Chiang, H.-K. Wu, W. Liu, M. Gerla, Routing in

clustered multihop mobile wireless networks with fading

channel, in: The IEEE Singapore International Conference

on Networks (SICON), April 1997, pp. 197–211.

[8] R. Coltun, The OSPF opaque LSA option, Technical

Report RFC 2370, IETF, July 1998.

[9] D.E. Comer, Internetworking with TCP/IP, vol. 1, third

ed., Prentice-Hall, Englewood Cliﬀs, NJ, 1995.

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to

Algorithms, sixteenth ed., The MIT Press and McGraw-

Hill, Cambridge, MA, 1996.

[11] Y.K. Dalal, R.M. Metcalfe, Reverse path forwarding of

broadcast packets, Communications of the ACM21 (1978)

1040–1048.

[12] C. Diot, W. Dabbous, J. Crowcroft, Multipoint commu-

nication: a survey of protocols, functions, and mechanisms,

IEEE Journal on Selected Areas in Communications 15 (3)

(1997) 277–290.

[13] Z.J. Haas, M.R. Pearlman, The zone routing protocol

(ZRP) for ad-hoc networks, Technical report, Internet-

draft, IETF MANET Working Group, July 2002.

[14] P.A. Humblet, S.R. Soloway, Topology broadcast algo-

rithms, Computer Networks and ISDN Systems 16 (1989)

179–186.

[15] D.B. Johnson, D.A. Maltz, Y.-C. Hu, The dynamic source

routing protocol for mobile ad hoc networks, Technical

report, Internet-draft, IETF MANET Working Group,

February 2003.

[16] Y.-B. Ko, N.H. Vaidya, Location-aided routing (LAR) in

mobile ad hoc networks, in: Proceedings of the ACM/IEEE

MobiCom ’99 Conference, November 1998, pp. 66–75.

[17] V.O.K. Li, Z. Zhang, Internet multicast routing and

transport control protocols, Proceedings of the IEEE 90

(3) (2002) 360–391.

[18] J. Moy, OSPF version 2. Standards Track RFC 2328,

IETF, April 1998.

[19] J.T. Moy, OSPF: Anotomy of an Internet Routing

Protocol, Addison Wesley, Reading, MA, 1998.

[20] J.T. Moy, OSPF: Complete Implementation (with CD-

ROM), Addison Wesley, Reading, MA, 2000.

[21] S. Murthy, J.J. Garcia-Luna-Aceves, An eﬃcient routing

protocol for wireless networks, Mobile Networks and

Applications 1 (2) (1996) 183–197.

[22] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, J.-P. Sheu, The

broadcast storm problem in a mobile ad hoc network, in:

Proceedings of the Fifth International Conference on

Mobile Computing and Networking (MobiCom’99), Au-

gust 1999, pp. 151–162.

[23] V. Park, S. Corson, Temporally-ordered routing algorithm

(tora) version 1 functional speciﬁcation, Technical Report,

Internet-draft, IETF MANET Working Group, February

2003.

[24] C.E. Perkins, E. Belding-Royer, S. Das, Ad hoc on-

demand distance vector routing, Technical Report, Net-

work Working Group, RFC 3561, July 2003.

[25] C.E. Perkins, P. Bhagwat, Highly dynamic destination-

sequenced distance-vector routing (dsdv) for mobile com-

puters, ACMSIGCOMMComputer Communication

Review 24 (4) (1994) 234–244.

[26] L.H. Sahasrabuddhe, B. Mukherjee, Multicast routing

algorithms and protocols: a tutorial, IEEE Network 14 (1)

(2000) 90–102.

Turgay Korkmaz
received the B.Sc.

degree with the ﬁrst ranking from

Computer Science and Engineering at

Hacettepe University, Ankara, Tur-

key, in 1994, and two M.Sc. degrees

from Computer Engineering at Bil-

kent University, Ankara, and Com-

puter and Information Science at

Syracuse University, Syracuse, NY, in

1996 and 1997, respectively. He re-

ceived his Ph.D. degree from Electri-

cal and Computer Engineering at

University of Arizona, Tucson, AZ, in

December 2001. In January 2002, he

joined the University of Texas at San Antonio, where he is

currently
an
Assistant
Professor
of
Computer
Science

department. His research interests include QoS-based routing,

multiple constrained path selection, eﬃcient dissemination of

network-state information, topology aggregation in hierarchi-

cal networks, and performance evaluation of QoS-based

routing protocols. He is a Co-PI on the NSF High Perfor-

mance Network Connections (HPNC) Award to provide In-

ternet 2 Connectivity for UTHSCSA and UTSA. He was the

co-chair for the ACMSymposium on Applied Computing

(SAC 2003), Special Track on Parallel and Distributed Sys-

tems and Networking and the SAC 2004 Special Track on

Computer networks. He also served on the technical program

committee of IEEE INFOCOM2004.

Marwan Krunz is an associate profes-

sor of Electrical and Computer Engi-

neering at the University of Arizona.

His research interests lie in the ﬁeld of

computer networks, especially in its

performance and traﬃc control as-

pects. His recent work has focused on

the provisioning of quality of service

(QoS) over wireless links, QoS routing,

traﬃc modeling, bandwidth allocation,

video-on-demand systems, and power-

aware protocols for ad hoc networks.

He has published more than 70 journal

articles and refereed conference papers

in these areas. He is a recipient of the National Science Foun-

dation CAREER Award (1998–2002). He currently serves on

the editorial board for the IEEE/ACMTransactions on Net-

working and the Computer Communications Journal. He was a

Guest Co-editor for a Feature Topic on QoS Routing (IEEE

Communications, June 2001) and a Special Issue on Hot

Interconnects (IEEE Micro, January 2002). He is the Technical

Program Co-chair for the IEEE INFOCOM2004 Conference

(Hong Kong, March 7–11, 2004), and previously served as the

Technical Program Co-chair for the 9th Hot Interconnects

Symposium (Stanford University, August 2001). He has served

and continues to serve on the executive and technical pro-

gram committees of many international conferences. He serves

as a reviewer and a panelist for NSF proposals, and is a con-

sultant for several corporations in the telecommunications

industry.

T. Korkmaz et al. / Computer Networks 46 (2004) 273–293

Jyothi Guntaka
received Bachelor of

Technology degree with a distinction

in Computer Science and Engineering

from Andhra University, Visakhapat-

nam, India. She received her M.S. in

Computer Science from The Univer-

sity of Texas at San Antonio, San

Antonio, Texas. Her research interests

include Quality of Service, Congestion

Control and Security in computer

networks.

293

 ...

 ...

 ...

 ...

 ...

 ...

 Header (20 bytes)

 Link 2

 L

 ink 1

 parent

 parent

 parent

 parent

 LSA origin

 LSA origin

 LSA origin

 LSA origin

 TNLA within 30-minute interval

 TNLA within 30-minute interval

 TSLA within 30-minute interval

 TSLA within 30-minute interval

 TSLA within 30-minute interval

